Lecture: Analyzing the household: smoothing and adjusting

Classroom assignment Iván Mejía-Guevara

- 1. Use the earnings (yle) and unincorporated (yls) income variables from your survey data (the ones you have estimated using NTA methods):
- a. Use the "mean" command in Stata to construct the age profiles and confidence intervals (assume you have a simple random sample design survey)
- b. Identify whether you have high variability problems for some age groups and characteristics of the profile you migh want to keep
- c. Identify the "t" statistic used by stata to construct the confidence interval
- c. Compute the coefficient of variation for the unsmooted age profile
- 2. Please use the "supsmu" R code to smooth the age profiles:
- a. Think first in the strategy you want to follow: remember the guidelines provided in the lecture.
- b. Smooth the profiles using 4 span options: 0.05, 0.1, 0.3 and "cv".
- c Compute the coefficient of variation for the smoothed age profile. Do the same for the unsmoothed profile and compare.
- 3. Construct the final labor income age profile:
- a. Use your macro controls to adjust the earnings and unincorporated income profiles.
- b. Sum yle, yls up to obtain the yl.
- c. Graph your results.

Hint: You may use the following R code example

```
*****Friedman's SuperSmoother and confidence intervals*****
```

```
#input data
```

nta<-read.table("data.txt", header=T, na.strings=c(".","NA"))

age<-nta\$age

yle_u<-nta\$yl #unsmoothed age profile

se<-nta\$se #standard error

cil<-nta\$cil #confidence interval (lower value)

pop<-nta\sample #population by age

t<-(yle_u[20]-cil[20])/se[20] #t-statistic

zeros < -rep(0.91)

sp<-0.05 #span selection J<-91*sp #neighborhood

smoothing

```
test<-supsmu(age[12:91], yle_u[12:91], pop[12:91], span="0.05")
```

yle_s<-append(zeros[1:11],replace(test\$y, test\$y<=0,0))

```
# confidence interval for smoothed profile
cils<-yle_s-t*se/J
                     #lower
cius<-yle_s+t*se/J
                     #upper
# plot confidence intervals
png("yle.png")
plot(age,yle_s,"1", col="dark red",ylab="mexican pesos",main="yle: sna 1993", xlim=c(0,90))
points(age,cils,"l", col="dark blue")
points(age,cius,"l", col="dark blue")
axis(1, at=5*0:range(age)[2], xlab="age")
dev.off()
# macro-adjustment
mcyle<-2251576293524.85
                                    #macro-control for yle
beta_yleu<-mcyle/(pop%*%yle_u)
yleu<-beta_yleu*yle_u
beta_yles<-mcyle/(pop%*%yle_s)
yle<-beta_yles*yle_s
# plot final profile
postscript(file="yle.eps",
      paper="special",
       width=8,
      height=8,
      horizontal=FALSE)
         yvalues = runif(50)
plot(age,yleu,"1", col="dark red",ylab="mexican pesos",main="yle: sna 1993", xlim=c(0,90))
points(age,yle,"l", col="dark blue")
axis(1, at=5*0:range(age)[2], xlab="age")
dev.off()
#save profile
write.csv(yle,"yle.csv")
```